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ABSTRACT 

In this paper, we consider an anticipating stochastic differential equation in 

which the integrands are not adapted to the filtration generated by a Wiener 

process in the stochastic integrals. By leveraging the correspondence 

between the Skorohod integral and the Itô-Skorohod integral, we propose 

solving these equations using standard iterative techniques. Subsequently, 

we discuss the existence and uniqueness of strong solutions to these 

equations. The incorporation of non-adapted, fuzzy, and random processes in 

such equations makes them applicable in financial models. 

 

1  Introduction 

Stochastic differential equations (SDEs) are widely used in various real-world systems, including 

economics and finance. Fuzzy stochastic differential equations (FSDEs) are particularly useful in 

addressing problems involving dual uncertainties of fuzziness and randomness concurrently (see [2, 8, 9, 

21]). Several papers have explored FSDEs using different approaches. In this study, we focus on the 

application of fuzzy stochastic integrals of both Itô and Lebesgue-Aumann types.  

The definition of the fuzzy Itô integral was introduced by Kim [10], while Malinowski presented novel 

approaches to define the fuzzy stochastic Itô integral in [13, 15, 16]. The method involves transforming the 

fuzzy Itô integral into a fuzzy set space, resembling classical d-dimensional Itô integrals. The fuzzy 

stochastic integral in [13, 15, 16] is driven by a combination of the Wiener process and fuzzy 

non-anticipating stochastic processes. To provide an overview of different approaches to studying FSDEs, 

Michta [20] presents three methods. There are also papers similar to the setup in [17], considering a class of 

FSDEs driven by a continuous local martingale. Fei in [6] introduces the fuzzy stochastic integral for the 

continuous local martingale class, incorporating non-Lipschitzian conditions to establish the existence and 

uniqueness of solutions. In [7], a class of FSDEs with a Lipschitzian condition driven by a continuous local 

martingale is explored. Additionally, [8] examines FSDEs driven by fractional Brownian motion. Recent 

progress has been made in SDEs with anticipating integrands, which find applications in finance. The 

Malliavin calculus plays a pivotal role in the analysis of stochastic differential equations with non-adapted 
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processes and in sensitivity analysis of price functions in finance. The Skorohod integral, or anticipating 

integral, extends the Itô integral to accommodate non-adapted integrands. However, the existence and 

uniqueness of solutions for anticipating SDEs are still unknown. In the Skorohod integral, the boundedness 

of the Malliavin derivative of the process is required, but closed-form formulas are generally not available, 

and the conventional Picard iteration method cannot be applied. Some results exist only for specific cases of 

crisp SDEs (see [4]). In [9], the Gaussian Malliavin derivative in fuzzy space was defined to investigate the 

existence and uniqueness of solutions to linear Skorohod fuzzy stochastic differential equations involving 

non-adapted fuzzy processes.  

This paper proposes a class of FSDEs with non-adapted process integrands. By utilizing the 

correspondence between Skorohod integrals and Itô-Skorohod integrals established in [26], we introduce a 

class of anticipating equations that can be solved using standard iterative techniques. The Black-Scholes 

model, commonly employed in option pricing (see [3]), assumes the absence of arbitrage opportunities in 

the market and describes the price movements of financial instruments through geometric Brownian 

motion. However, the model parameters may be imprecisely estimated as fuzzy numbers. The structure of 

the paper is as follows: Section 2 provides preliminaries and definitions of fuzzy random variables, 

measurable multi-functions, anticipating fuzzy stochastic integrals, fuzzy stochastic processes, and 

Gaussian Malliavin calculus results. In Section 3, we propose a class of Itô-Skorohod FSDEs and present 

their solutions using iterative methods, along with an example in finance. The conclusion is presented in the 

final section. 

 

2  Preliminaries 
2.1  Gaussian Malliavin Calculus 
 

The purpose of this section is to recall some definitions and results on Malliavin calculus operators defined 

on Gaussian space. We can also refer the reader to [21] for more details. Consider a centered Gaussian 

process 𝑊 on [0, 𝑇] defined on its canonical complete probability space (Ω, 𝐴, 𝑃). Denote by 𝑆 a family 

of smooth functionals 

 

𝐹 = 𝑓(𝑊𝑡1 , … ,𝑊𝑡𝑛),    𝑡1, … , 𝑡𝑛 ∈ [0, 𝑇], (1) 

 

 where 𝑛 ≥ 1, and the function 𝑓 is an infinitely differentiable on ℝ𝑛 such that all its partial derivatives 

have polynomial growth property. The Malliavin derivative 𝐷𝐹 that belongs to 𝐿2([0, 𝑇] × Ω) is defined 

by  

𝐷𝑡𝐹 =∑

𝑛

𝑖=1

𝜕𝑖𝑓(𝑊𝑡1 , … ,𝑊𝑡𝑛)1[0,𝑡𝑖](𝑡). (2) 

   

 The Malliavin derivative is a dense and closed operator in 𝐿2(Ω), that its domain 𝐷𝑜𝑚 𝐷 is the closure 

of smooth random variables with respect to the following norm  

𝔼|𝐹|2 + 𝔼∫
𝑇

0

|𝐷𝑡𝐹|
2𝑑𝑡. (3) 

   

 The iterated derivative 𝐷𝑘𝐹 belongs to the space 𝐿2(𝑇×𝑘 × Ω), for every 𝑘 ≥ 0. For every 𝑝 ≥ 1 and 

𝑘 ≥ 0, 𝔻𝑘,𝑝 denotes the closure of 𝑆 with respect to the norm  
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‖𝐹‖𝑘,𝑝
𝑝

= ‖𝐹‖
𝐿2(Ω)
𝑝

+∑

𝑘

𝑗=1

‖𝐷𝑗𝐹‖
𝐿2([0,𝑇]𝑘)

𝑝
. (4) 

 

The adjoint of the operator 𝐷 is denoted by 𝛿, and is called the Skorohod integral. The domain of 𝛿, 

denoted by Dom𝛿, is the set of square-integrable random variables 𝑢 ∈ 𝐿2([0, 𝑇] × Ω) such that  

 |𝔼∫
𝑇

0
𝑢(𝑡)𝐷𝑡𝐹𝑑𝑡| ≤ 𝐶‖𝐹‖𝐿2(Ω). 

Then, the duality relationship is  

𝔼(𝐹𝛿(𝑢)) = 𝔼∫
𝑇

0

𝑢𝑡𝐷𝑡𝐹𝑑𝑡, 𝑢 ∈ 𝐷𝑜𝑚𝛿, 𝐹 ∈ 𝑆. (5) 

 

The variance of the Skorohod integral is  

𝔼(𝛿2(𝑢)) = 𝔼∫
𝑇

0

𝑢𝑡
2𝑑𝑡 + 𝔼∫

𝑇

0

∫
𝑇

0

𝐷𝑠𝑢𝑡𝐷𝑡𝑢𝑠𝑑𝑡𝑑𝑠. (6) 

 

 The space 𝕃𝑘.𝑝: = 𝔻𝑘.𝑝(𝐿2([0, 𝑇])), coincides with the class of processes 𝑢 ∈ 𝐿2([0, 𝑇] × Ω) such that 

𝑢𝑡 ∈ 𝔻
𝑘.𝑝 for almost all t. 

  Let 𝑢 ∈ 𝐷𝑜𝑚𝛿 and 𝐹 ∈ 𝔻1.2 such that 𝔼(𝐹2 ∫
𝑇

0
𝑢𝑡
2𝑑𝑡) < ∞, then  

∫
𝑇

0

𝐹𝑢𝑡𝑑𝑊𝑡 = 𝐹∫
𝑇

0

𝑢𝑡𝑑𝑊𝑡𝑑𝑡 + ∫
𝑇

0

(𝐷𝑡𝐹)𝑢𝑡𝑑𝑡, (7) 

 

 such that 𝐹𝑢 ∈ 𝐷𝑜𝑚𝛿 if and only if the right-hand side of (7) is square-integrable. 

   We can consider the following processes  

 ∫
𝑡

0
𝑢(𝑠)𝑑𝑊(𝑠), 

 ∫
𝑡

0
𝔼(𝑣(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠), 

 where 𝑢, 𝑣 ∈ 𝕃𝑘.𝑝, for 𝑘 ≥ 1, 𝑝 ≥ 2; as Skorohod and Itô-Skorohod integral processes respectively 

(see [26]). It can be shown that (see [27]) the two classes coincide for regular integrands. 

 

2.2  Fuzzy Background 
 

 This section includes some preliminaries and definitions on fuzzy numbers and fuzzy stochastic integrals 

which are taken from [15], [17], [12], [18], [24] and references therein. Let us denote by 𝐾(ℝ) the family 

of all convex, compact and nonempty subsets of ℝ. We define the Hausdorff metric 𝑑𝐻 by  

 𝑑𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥 {sup
𝑎∈𝐴

inf
𝑏∈𝐵

|𝑎 − 𝑏|, sup
𝑏∈𝐵

inf
𝑎∈𝐴

|𝑎 − 𝑏|}. 

The metric space 𝐾(ℝ) with respect to 𝑑𝐻 is separable and complete. If 𝐴, 𝐵, 𝐶 ∈ 𝐾(ℝ), then 𝑑𝐻(𝐴 +

𝐶, 𝐵 + 𝐶) = 𝑑𝐻(𝐴, 𝐵). 

 

Definition 2.1 Consider the probability space (𝛺, 𝐴, 𝑃). The mapping 𝐹:𝛺 → 𝐾(ℝ) is said to be 𝐴 − 

measurable if it satisfies:  

 {𝜔 ∈ Ω: 𝐹(𝜔) ∩ 𝐶 ≠ 𝜙} ∈ 𝐴, 
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for any closed set 𝐶 ⊂ ℝ.  

 Denote by 𝑀, a family of 𝐴 − measurable multifunctions with values in 𝐾(ℝ). 

  

Definition 2.2 A multifunction 𝐹 ∈ 𝑀 is 𝐿𝑝 − integrably bounded, for 𝑝 ≥ 1, if there is ℎ ∈

𝐿𝑝(𝛺, 𝐴, 𝑃, ℝ+) such that ‖|𝐹|‖ ≤ ℎ 𝑎. 𝑠., and  

 ‖|𝐹|‖ = 𝑑𝐻(𝐹, {0}) = sup
𝑓∈𝐹

‖𝑓‖,    𝑓𝑜𝑟 𝐹 ∈ 𝐾(ℝ),ℝ+ = [0,∞). 

 𝐹 ∈ 𝑀 is 𝐿𝑝 −integrably bounded if and only if ‖|𝐹|‖ ∈ 𝐿𝑝(Ω, 𝐴, 𝑃, ℝ+). Define  

 𝐿𝑝(Ω, 𝐴, 𝑃; 𝐾(ℝ)) = {𝐹 ∈ 𝑀: ‖|𝐹|‖ ∈ 𝐿𝑝(Ω, 𝐴, 𝑃, ℝ+)}. 

A fuzzy set 𝑢 ∈ ℝ is determined by its membership function, 𝑢:ℝ → [0,1] and 𝑢(𝑥), for 𝑥 ∈ ℝ. is the 

membership degree of 𝑥 in fuzzy set 𝑢.  Let us denote by 𝐹(ℝ) the fuzzy sets 𝑢:ℝ → [0,1] such that 

[𝑢]𝛼 ∈ 𝐾(ℝ) for every 𝛼 ∈ [0.1], where [𝑢]𝛼 = {𝑥 ∈ ℝ:𝑢(𝑥) ≥ 𝛼}. 

For scalar multiplication and addition in fuzzy set space 𝐹(ℝ) one can write  

 [𝜆𝑢]𝛼 = 𝜆[𝑢]𝛼 , 

 

 [𝑢 + 𝑣]𝛼 = [𝑢]𝛼 + [𝑣]𝛼 , 

where 𝑢, 𝑣 ∈ 𝐹(ℝ), 𝜆 ∈ ℝ, and 𝛼 ∈ [0,1]. The metric 𝑑∞: 𝐹(ℝ) × 𝐹(ℝ) → [0,∞) is defined by  

 𝑑∞(𝑢, 𝑣) = sup
𝛼∈[0,1]

𝑑𝐻([𝑢]
𝛼 , [𝑣]𝛼), 

then it is famous that (𝐹(ℝ), 𝑑∞) is a complete metric space with metric 𝑑∞ in 𝐹(ℝ). For every fuzzy 

elements 𝑢, 𝑣, 𝑤, 𝑧 ∈ 𝐹(ℝ), 𝜆 ∈ ℝ, we have the following properties (see [17] and [22]): 

  

    • 𝑑∞(𝑢 + 𝑤, 𝑣 + 𝑤) = 𝑑∞(𝑢, 𝑣), 

 

    • 𝑑∞(𝑢 + 𝑤, 𝑣 + 𝑤) = 𝑑∞(𝑢, 𝑤) + 𝑑∞(𝑣, 𝑧), 

 

    • 𝑑∞(𝜆𝑢, 𝜆𝑣) = |𝜆|𝑑∞(𝑢, 𝑣).  

 

Define ⟨⋅⟩: ℝ → 𝐹(ℝ) as an embedding of ℝ into 𝐹(ℝ), 

 ⟨𝑟⟩(𝑎) = {
1       𝑓𝑜𝑟 𝑎 = 𝑟,

0       𝑓𝑜𝑟 𝑎 ∈ 𝑅 \{𝑟} 
. 

 

Definition 2.3 A function 𝑋: 𝛺 → 𝐹(ℝ) on the probability space (𝛺, 𝐴, 𝑃) is a fuzzy random variable if 

for all 𝛼 ∈ [0,1] the mapping [𝑋]𝛼: 𝛺 → 𝐾(ℝ) is 𝐴 −measurable multifunction.  

 

Consider a metric 𝜌 in the set 𝐹(ℝ), and 𝜎 −algebra 𝐵𝜌 that is derived by 𝜌. A fuzzy random variable 

is defined as a mapping between two spaces (Ω, 𝐴) and (𝐹(ℝ), 𝐵𝜌). That is, X is 𝐴|𝐵𝜌 −measurable. The 

following metric is also used  

 𝑑𝑠(𝑢. 𝑣): = inf
𝜆∈Λ

𝑚𝑎𝑥 { sup
𝑡∈[0,1]

|𝜆(𝑡) − 𝑡|, sup
𝑡∈[0,1]

𝑑𝐻(𝑋𝑢(𝑡), 𝑋𝑢(𝜆(𝑡))}. 

where Λ  is the set of strictly increasing continuous functions 𝜆: [0,1] → [0,1] such that 𝜆(0) = 0, 

𝜆(1) = 1, and 𝑋𝑢, 𝑋𝑣: [0,1] → 𝐹(ℝ) are cadlag representations for the fuzzy sets 𝑢, 𝑣 ∈ 𝐹(ℝ) (see [5]). 

 

Proposition 2.4 [14] Consider 𝑋: 𝛺 → 𝐹(ℝ) on the probability space (𝛺, 𝐴, 𝑃), then 
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- X is a fuzzy random variable if and only if X is measurable with respect to 𝐴|𝐵𝑑𝑠. 

- If X is measurable with respect to 𝐴|𝐵𝑑𝑠 , then it is a fuzzy random variable; the opposite implication is 

not true.  

Therefore, the measurability on 𝐹(ℝ)  with respect to the metric 𝑑∞  is not equivalent to the 

measurability of the 𝛼 −level mappings.  

 

Definition 2.5 A fuzzy random variable 𝑋, is 𝐿𝑝 −integrably bounded, for 𝑝 ≥ 1, if [𝑋]𝛼 ∈

𝐿𝑝(𝛺, 𝐴, 𝑃, 𝐾(ℝ)), for every 𝛼 ∈ [0,1]. 

 

Let us denote by 𝐿𝑝(Ω, 𝐴, 𝑃; 𝐹(ℝ)), the set of all 𝐿𝑝 −integrably bounded fuzzy random variables. The 

random variables 𝑋, 𝑌 ∈ 𝐿𝑝(Ω, 𝐴, 𝑃; 𝐹(ℝ)) are identical if 𝑃(𝑑∞(𝑋, 𝑌) = 0) = 1. 

It is easy to see that for 𝑋: Ω → 𝐹(ℝ) being a fuzzy random variable and 𝑝 ≥ 1, the following conditions 

are equivalent: 

a) 𝑋 ∈ 𝐿𝑝(Ω, 𝐴, 𝑃; 𝐹(ℝ)), 

b) [𝑋]0 ∈ 𝐿𝑝(Ω, 𝐴, 𝑃, 𝐾(ℝ)), 

c) ‖|[𝑋]0|‖ ∈ 𝐿𝑝(Ω, 𝐴, 𝑃, ℝ+). 

 

Let 𝐼:= [0, 𝑇], and (Ω, 𝐴, 𝑃) be complete with a filtration {𝐴𝑡}𝑡∈𝐼 satisfying an increasing and right 

continuous family of sub 𝜎 −algebras of 𝐴, and contains null sets. 

 

Definition 2.6 If 𝑋(𝑡): 𝛺 → 𝐹𝑐
𝑏(ℝ), for every 𝑡 ∈ 𝐼, is a fuzzy random variable, then 𝑋: 𝐼 × 𝛺 → 𝐹𝑐

𝑏(ℝ) 

is a fuzzy stochastic process.  

 

Definition 2.7 If almost all trajectories of a fuzzy process 𝑋(⋅, 𝜔): 𝐼 × 𝛺 → 𝐹(ℝ) are 𝑑∞ −continuous 

then the process is 𝑑∞ −continuous.  

  

Definition 2.8 If [𝑋]𝛼: 𝐼 × 𝛺 → 𝐾(ℝ) is 𝐵(𝐼) ⊗ 𝐴 − measurable function for all 𝛼 ∈ [0,1], where 

𝐵(𝐼) is Borel 𝜎 −algebra of subsets of I. Then, the process 𝑋 is measurable.  

 

Definition 2.9 A fuzzy process X is 𝐿𝑝 −integrably bounded (𝑝 ≥ 1), if there exists a real-valued 

process ℎ ∈ 𝐿𝑝(𝐼 × 𝛺, 𝐵(𝐼) ⊗ 𝐴;ℝ+) such that  

 ‖|[𝑋(𝑡, 𝜔)]0|‖ ≤ ℎ(𝑡, 𝜔), 

for almost all (𝑡, 𝜔) ∈ 𝐼 × Ω.  

 

Denote by 𝐿𝑝(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)) the set of 𝐿𝑝 −integrably bounded fuzzy stochastic processes. 

Consider 𝑋 ∈ 𝐿𝑝(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)), according to the Fubini’s theorem, the fuzzy integral is defined 

by  

 ∫
𝑇

0
𝑋(𝑠, 𝜔)𝑑𝑠. 

where 𝜔 ∈ Ω\𝑁, 𝑁 ∈ 𝐴 and 𝑃(𝑁) = 0. The level sets of this fuzzy integral are the set-valued Aumann 
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integrals of level sets of 𝑋(⋅, 𝜔) . For every 𝛼 ∈ [0,1],  and every 𝜔 ∈ Ω\𝑁,  the Aumann integral 

∫
𝑇

0
[𝑋(𝑠, 𝜔)]𝛼𝑑𝑠 belongs to 𝐾(ℝ) (see [11]), so we have a fuzzy random variable ∫

𝑇

0
𝑋(𝑠, 𝜔)𝑑𝑠 ∈ 𝐹(ℝ) 

for every 𝜔 ∈ Ω\𝑁 ( see [16]). 

 

Definition 2.10 The fuzzy stochastic Lebesgue-Aumann integral of 𝑋 ∈ 𝐿1(𝐼 × 𝛺, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)) is 

defined as:  

𝐿𝑥(𝑡. 𝜔) = {
∫
𝑇

0

1[0,𝑡](𝑠)𝑋(𝑠, 𝜔)𝑑𝑠      𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝜔 ∈ Ω \ 𝑁 

⟨0⟩       𝑓𝑜𝑟  𝑒𝑣𝑒𝑟𝑦  𝜔 ∈ 𝑁 

. (8) 

 

 Proposition 2.11 [14] For the stochastic integral 𝐿𝑥 , we have the following properties: 

 

    1) For 𝑝 ≥ 1, if 𝑋 ∈ 𝐿𝑝(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴;𝐹(ℝ)), then 𝐿𝑥(⋅,⋅) ∈ 𝐿
𝑝(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴;𝐹(ℝ)). 

 

    2) If 𝑋 ∈ 𝐿1(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)), then {𝐿𝑥(𝑡)}𝑡∈𝐼 is 𝑑∞ −continuous. 

 

    3) Let 𝑋, 𝑌 ∈ 𝐿𝑝(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)), for 𝑝 ≥ 1, then  

 sup
𝑢∈[0,𝑡]

𝑑∞
𝑝
(𝐿𝑥(𝑢), 𝐿𝑦(𝑢)) ≤ 𝑡

𝑝−1 ∫
𝑡

0
𝑑∞
𝑝
(𝑋(𝑠), 𝑌(𝑠))𝑑𝑠    𝑎 ∙ 𝑒 ∙ 

 

Let us denote by ⟨⋅⟩: ℝ → 𝐹(ℝ) an embedding of ℝ into 𝐹(ℝ) i.e. for 𝑟 ∈ ℝ, 
 

 ⟨𝑟⟩(𝑎) = {
1       𝑓𝑜𝑟  𝑎 = 𝑟,

0       𝑓𝑜𝑟  𝑎 ∈  𝑅 \ {𝑟} 
. 

 

For a random variable 𝑋: Ω → ℝ on the probability space (Ω, 𝐴, 𝑃), the embedding ⟨𝑋⟩: Ω → 𝐹(ℝ) is a 

fuzzy random variable. 

We consider fuzzy stochastic Itô integral by the fuzzy random variable as ⟨∫
𝑇

0
𝑋(𝑠)𝑑𝑊(𝑠)⟩, where 𝑊 is 

a Wiener process. The following properties will be useful. 

 

Proposition 2.12  (Ref. 15) Let the process 𝑋 ∈ 𝐿2(𝐼 × 𝛺, 𝐵(𝐼) ⊗ 𝐴;ℝ). then {⟨∫
𝑡

0
𝑋(𝑠)𝑑𝑊(𝑠)⟩}

𝑡∈𝐼
 is 

a fuzzy stochastic process and ⟨∫
𝑡

0
𝑋(𝑠)𝑑𝑊(𝑠)⟩ belongs to 𝐿2(𝐼 × 𝛺, 𝐵(𝐼) ⊗ 𝐴;𝐹(ℝ)).  

If the process 𝑋 ∈ 𝐿2(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴;ℝ),  then we can easily show that {⟨∫
𝑡

0
𝑋(𝑠)𝑑𝑊(𝑠)⟩}

𝑡∈𝐼
 is 

𝑑∞ −continuous. 

 

 

3  Itô-Skorohod Fuzzy Stochastic Differential Equations 
 

  In this paper, we consider the following fuzzy stochastic differential equation 

 

{
𝑑𝑋(𝑡) = 𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡),

𝑋(0) = 𝑥0,
 

on a complete probability space (Ω, 𝐴, 𝑃) with filtration (𝐴(𝑡))𝑡≥0 , where 𝑓: [0,∞) × 𝐹(ℝ) → 𝐹(ℝ) 
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and 𝑔: [0,∞) × 𝐹(ℝ) → 𝐹(ℝ). Here 𝐹(ℝ) is the family of all fuzzy sets of which level sets are nonempty 

closed convex subsets of , the set of all real numbers ℝ, and (𝑊(𝑡))𝑡≥0 is a 1- dimennsional Brownian 

motion. The solution of fuzzy stochastic differential equation  is satisfying in 

𝑋(𝑡) = 𝑥 +∫
𝑡

0

𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ∫
𝑡

0

𝑔(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠),   a. s. 

  In this section, we consider an example of the fuzzy stochastic differential equations under the 

Lebesgue-Aumann integral, random coefficients, and Brownian motion. Using the Picard’s iterations 

method, we state a theorem of existence and uniqueness for a class of anticipating stochastic differential 

equations. We know that this iteration method cannot be implemented in anticipating stochastic calculus 

since the mean square of the Skorohod integral formula includes the Malliavin derivative and a closed form 

formula cannot be found. Here, we consider a class of anticipating FSDEs that can be solved by the iteration 

method. 

 

3.1  Picard Iteration Method 
 

 The Picard’s iteration method is famous in SDEs and the differential equations theory. One can construct 

a random processes sequence which converges to a solution of the equation (see [1] ). Define 𝑋𝑛(𝑡) by the 

equation 

𝑋𝑛+1(𝑡) = 𝑋0 +∫
𝑡

0

𝑓(𝑠, 𝑋𝑛(𝑠))𝑑𝑠 + ∫
𝑡

0

𝑔(𝑠, 𝑋𝑛(𝑠))𝑑𝑊(𝑠), 𝑋0 = 𝑋(0), (9) 

 

 where {𝑊(𝑡)}𝑡≥0 be a standard Brownian motion on a probability space (Ω, 𝐴, 𝑃), and functions 𝑓 and 

𝑔 satisfy these conditions for some constant 𝑘 ≥ 0 

C1) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)|2 + |𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)|2 ≤ 𝑘|𝑥 − 𝑦|2, 𝑥, 𝑦 ∈ ℝ, 𝑡 ≥ 0 

C2) |𝑓(𝑡, 𝑥)|2 + |𝑔(𝑡, 𝑥)|2 ≤ 𝑘(1 + 𝑥2), 𝑥 ∈ ℝ, 𝑡 ≥ 0. 

All the processes 𝑋𝑛(𝑡) are well-defined with continuous paths. By induction and showing that the limit 

process is a solution to the SDE and the sequence 𝑋𝑛(𝑡) uniformly converges on compact time intervals, 

the existence of solutions for the equation (9) is proved. The sequence of random variables 𝑋𝑛(𝑡) for each 

𝑡 ≥ 0 converges in 𝐿2 to a random variable 𝑋(𝑡). The first term of the sequence 𝑋0 and then for t in any 

bounded interval [0, 𝑇], 𝑋1(𝑡) are bounded uniformly in 𝐿2. Then there exists 𝐶 = 𝐶𝑇 < ∞ for each 𝑇 <

∞ such that for all 𝑡 ≤ 𝑇 we have 𝔼(𝑋1(𝑡) − 𝑋0(𝑡))2 ≤ 𝐶. By hypotheses C1 and C2, the Itô isometry 

property and application of the triangle inequality, one can obtain 𝔼(𝑋𝑛(𝑡) − 𝑋𝑛−1(𝑡))2 ≤ ∞,. for all 𝑛 ∈

ℕ . Hence, the sequence of Picard’s iterations 𝑋𝑛(𝑡)  has a limit 𝑋(𝑡)  in 𝐿2  at all 𝑡 ≥ 0 . For the 

uniqueness of the solution, consider that there exist two continuous solutions for some initial value 𝑥 as 

follows:  

 𝑋(𝑡) = 𝑥 + ∫
𝑡

0
𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ∫

𝑡

0
𝑔(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠), 

 and  

 𝑌(𝑡) = 𝑥 + ∫
𝑡

0
𝑓(𝑠, 𝑌(𝑠))𝑑𝑠 + ∫

𝑡

0
𝑔(𝑠, 𝑌(𝑠))𝑑𝑊(𝑠). 

 Then the difference is  

 𝑌(𝑡) − 𝑋(𝑡) = ∫
𝑡

0
(𝑓(𝑠, 𝑋(𝑠)) − 𝑓(𝑠, 𝑌(𝑠)))𝑑𝑠 + ∫

𝑡

0
(𝑔(𝑠, 𝑋(𝑠)) − 𝑔(𝑠, 𝑌(𝑠)))𝑑𝑊(𝑠).(10) 

 Although the second moment in (10) can be bounded, its second integral cannot be bounded pathwise. 
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From the isometry property, we have  

 𝔼 {∫
𝑡

0
(𝑔(𝑠, 𝑋(𝑠)) − 𝑔(𝑠, 𝑌(𝑠)))𝑑𝑊(𝑠)}

2
≤ 𝑘2 ∫

𝑡

0
𝔼(𝑋(𝑠) − 𝑌(𝑠))2𝑑𝑠, 

where 𝑘 is a constant. Then  

 𝔼(𝑋(𝑡) − 𝑌(𝑡))2 ≤ 2𝑘2(1 + 𝑇) ∫
𝑡

0
𝔼(𝑋(𝑠) − 𝑌(𝑠))2𝑑𝑠. 

One can suppose the finite and integrable 𝐽(𝑡) = 𝔼(𝑋(𝑡) − 𝑌(𝑡))2 on compact time intervals, from the 

Gronwall inequality we have 𝐽(𝑡) = 0 for all 𝑡 ∈ 𝐼, then the uniqueness would be proved. 

 

3.2  Itô-Skorohod Model 
 

 Consider the following Skorohod fuzzy stochastic differential equation 

 

 𝑋(𝑡) = 𝑋0 + ∫
𝑡

0
𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ⟨∫

𝑡

0
𝑔 (𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)) 𝑑𝑊(𝑠)⟩ , 𝑋0 = 𝑋(0)   𝑎. 𝑠.,                                                                      (11) 

 with coefficients 𝑓: 𝐼 × Ω × 𝐹(ℝ) → 𝐹(ℝ) , 𝑔: 𝐼 × Ω × 𝐹(ℝ) → 𝐹(ℝ), and the fuzzy random variable 

𝑋0: Ω → 𝐹(ℝ). 
 

Definition 3.1 A strong solution to (11) is a fuzzy process 𝑋 such that  

 

    • 𝑋 ∈ 𝐿2(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴;𝐹(ℝ)), 
 

    • X is a continuous fuzzy process with respect to 𝑑∞, 
 

    • A strong solution X is known to be strongly unique, if  

 𝑑∞(𝑋(𝑡, 𝜔), 𝑌(𝑡, 𝜔)) = 0     

where 𝑌: 𝐼 × Ω → 𝐹(ℝ) is any strong solution of (11).  

 

 

Assumptions 3.2  Now we consider assumptions on the equation coefficients: 

   A1) The mapping 𝑓: 𝐼 × Ω × 𝐹(ℝ) → 𝐹(ℝ) is 𝐵(𝐼) ⊗ 𝐴⊗𝐵𝑑𝑠|𝐵𝑑𝑠 −measurable. and 𝑔: 𝐼 × Ω ×

𝐹(ℝ) → ℝ is 𝐵(𝐼) ⊗ 𝐴⊗𝐵𝑑𝑠|𝐵(ℝ) −measurable. 

 

   A2)  For every 𝑡 ∈ 𝐼, and every 𝑢, 𝑣 ∈ 𝐹(ℝ) there exists a constant 𝐿 > 0,  

 𝑚𝑎𝑥{𝑑∞
2 (𝑓(𝑡, 𝜔, 𝑢), 𝑓(𝑡, 𝜔, 𝑣)), |𝑔(𝑡, 𝜔, 𝑢) − 𝑔(𝑡, 𝜔, 𝑣)|2} ≤ 𝐿𝑑∞

2 (𝑢, 𝑣), 𝑃 − 𝑎 ∙ 𝑒 ∙ 

 

   A3)  For every 𝑡 ∈ 𝐼 and every 𝑢 ∈ 𝐹(ℝ) there exists a constant 𝐶 > 0 such that  

 𝑚𝑎𝑥{𝑑∞
2 (𝑓(𝑡, 𝜔, 𝑢), ⟨0⟩), |𝑔(𝑡, 𝜔, 𝑢)|2} ≤ 𝐶(1 + 𝑑∞

2 (𝑢, ⟨0⟩)), 𝑃 − 𝑎 ∙ 𝑒 ∙ 

 

Proposition 3.3  Let 𝑋, 𝑌 ∈ 𝐿2(𝐼 × 𝛺, 𝐵(𝐼) ⊗ 𝐴;ℝ), then for every 𝑡 ∈ 𝐼 

 𝔼 sup
𝑢∈[0.𝑡]

𝑑∞
2 (⟨∫

𝑢

0
𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩, ⟨∫

𝑢

0
𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩) 

 ≤ 4𝔼∫
𝑡

0
𝑑∞
2 (⟨𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)⟩, ⟨𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐)⟩)𝑑𝑠. (12) 

Proof: Let us consider the process 𝑍(𝑡) = ∫
𝑡

0
𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠), then 𝔼(𝑍(𝑡) − 𝑍(𝑠)|𝐴[𝑠,𝑡]𝑐) = 0, 

which implies that the projection of 𝑍(𝑡) on the Brownian filtration is a martingale. From (6), we have an 

isometry property  
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 𝔼(∫
𝑡

0
𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠))

2 = 𝔼∫
𝑡

0
(𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐))

2𝑑𝑠. 

Now due to the Doob inequality. isometry property, and Itô integral we have  

 𝔼 sup
𝑢∈[0,𝑡]

𝑑∞
2 (⟨∫

𝑢

0
𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩, ⟨∫

𝑢

0
𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩) 

 = 𝔼 sup
𝑢∈[0,𝑡]

𝑑𝐻
2 ({∫

𝑢

0
𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)}, {∫

𝑢

0
𝑔(𝑠, 𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)}) 

 = 𝔼 sup
𝑢∈[0,𝑡]

‖∫
𝑢

0
(𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐) − 𝔼(𝑌(𝑠)|𝐴[𝑠,]𝑐))𝑑𝑊(𝑠)‖

2
 

 ≤ 4𝔼‖∫
𝑢

0
(𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐) − 𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)‖

2
 

 = 4𝔼∫
𝑢

0
‖𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐) − 𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐)‖

2
𝑑𝑠 

 = 4𝔼∫
𝑡

0
𝑑∞
2 (⟨𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)⟩, ⟨𝔼(𝑌(𝑠)|𝐴[𝑠,𝑡]𝑐)⟩)𝑑𝑠. 

    

Theorem 3.4  Let 𝑋0 ∈ 𝐿
2(𝛺, 𝐴0, 𝑃; 𝐹(ℝ)). Suppose that 𝑓: 𝐼 × 𝛺 × 𝐹(ℝ) → 𝐹(ℝ) and 𝑔: 𝐼 × 𝛺 ×

𝐹(ℝ) → ℝ, satisfy assumptions (A1)-(A3). Then Equation (11) has a unique strong solution.  

  Proof: Consider the Picard iterations. 𝑋0(𝑡) = 𝑋0, and for n = 1, 2, . . .  

 𝑋𝑛+1(𝑢) = 𝑋0 + ∫
𝑢

0
𝑓(𝑠, 𝑋𝑛(𝑠))𝑑𝑠 + ⟨∫

𝑢

0
𝑔 (𝑠, 𝔼(𝑋𝑛(𝑠)|𝐴[𝑠,𝑡]𝑐)) 𝑑𝑊(𝑠)⟩ ,   𝑎. 𝑠. (13) 

 Denote  

 𝑗𝑛(𝑡) = 𝔼 sup
𝑢∈[0.𝑡]

𝑑∞
2 (𝑋𝑛(𝑢), 𝑋𝑛−1(𝑢)), 

for 𝑛 ∈ ℕ and 𝑡 ∈ 𝐼. Then, using propositions 2.11, 3.3, and assumption A3, we can write  

 𝑗1(𝑡) = 𝔼 sup
𝑢∈[0,𝑡]

𝑑∞
2 (∫

𝑢

0
𝑓(𝑠, 𝑋0(𝑠))𝑑𝑠 + ⟨∫

𝑢

0
𝑔(𝑠, 𝔼(𝑋0(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩, ⟨0⟩) 

 ≤ 2 [𝔼 sup
𝑢∈[0,𝑡]

𝑑∞
2 (∫

𝑢

0
𝑓(𝑠, 𝑋0(𝑠))𝑑𝑠, ⟨0⟩)     

     +𝔼 sup
𝑢∈[0,𝑡]

𝑑∞
2 (⟨∫

𝑢

0
𝑔(𝑠, 𝔼(𝑋0(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩, ⟨0⟩)] 

 ≤ 2 [𝑡𝔼∫
𝑡

0
𝑑∞
2 (𝑓(𝑠, 𝑋0(𝑠)), ⟨0⟩)𝑑𝑠 + 4𝔼∫

𝑡

0
𝑑∞
2 (⟨𝑔(𝑠, 𝔼(𝑋0(𝑠)|𝐴[𝑠,𝑡]𝑐)⟩, ⟨0⟩)𝑑𝑠] 

 ≤ 𝐾1𝑡,     

 for every 𝑡 ∈ 𝐼, where 𝐾1 = 4𝐶
2(𝑇 + 4)(1 + 𝔼‖|[𝑋]0|‖2) < ∞. Then, similarly  

 𝑗𝑛+1(𝑡) ≤ 2(𝑡 + 4)𝐿𝔼∫
𝑡

0
𝑑∞
2 (𝑋𝑛(𝑠), 𝑋𝑛−1(𝑠))𝑑𝑠 

 ≤ 2(𝑡 + 4)𝐿 ∫
𝑡

0
𝔼 sup
𝑢∈[0,𝑠]

𝑑∞
2 (𝑋𝑛(𝑢), 𝑋𝑛−1(𝑢))𝑑𝑠 

 ≤ 2(𝑇 + 4)𝐿 ∫
𝑡

0
𝑗𝑛(𝑠)𝑑𝑠. 

 Hence  

 𝑗𝑛(𝑡) ≤ 2
𝑛+1𝐶(𝑇 + 4)𝑛(1 + 𝔼‖|[𝑋]0|‖2)𝐿𝑛−1

𝑡𝑛

𝑛!
, 𝑡 ∈ 𝐼, 𝑛 ∈ ℕ. 

From the Chebyshev’s inequality it follows that  

 𝑃(sup
𝑢∈𝐼

𝑑∞
2 (𝑋𝑛(𝑢), 𝑋𝑛−1(𝑢)) >

1

2𝑛
) ≤ 2𝑛𝑗𝑛(𝑇). 

The series ∑∞𝑛=1 2
𝑛𝑗𝑛(𝑇) is convergent. From Borel-Cantelli lemma, we can write  
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 𝑃 (sup
𝑢∈𝐼

𝑑∞(𝑋
𝑛(𝑢), 𝑋𝑛−1(𝑢)) >

1

(√2)𝑛
    𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦    𝑜𝑓𝑡𝑒𝑛) = 0. 

For almost all 𝜔 ∈ Ω, there exists 𝑛0(𝜔) such that  

 sup
𝑢∈𝐼

𝑑∞(𝑋
𝑛(𝑢), 𝑋𝑛−1(𝑢)) ≤

1

(√2)𝑛
,    𝑖𝑓    𝑛 ≥ 𝑛0. 

The sequence 𝑋𝑛(⋅, 𝜔) is uniformly convergent to a 𝑑∞-continuous function �̃�𝑛(⋅, 𝜔) for every 𝜔 ∈

Ω𝑐 , where Ω𝑐 ∈ 𝐴 and 𝑃(Ω𝑐) = 1. For the mapping 𝑋: 𝐼 × Ω → 𝐹(ℝ), we can define 𝑋𝑛(⋅, 𝜔) = �̃�𝑛(⋅

, 𝜔) if 𝜔 ∈ Ω𝑐  and 𝑋𝑛(⋅, 𝜔) as freely chosen fuzzy function in the case 𝜔 ∈ Ω \ Ω𝑐 . For every 𝛼 ∈

[0,1] and every 𝑡 ∈ 𝐼 with a.s. we have  

 𝑑𝐻([𝑋
𝑛(𝑡)]𝛼 , [𝑋(𝑡)]𝛼) → 0    𝑎𝑠    𝑛 → ∞. 

Therefore, X is a continuous fuzzy stochastic process. Then from 𝑋𝑛 ∈ 𝐿2(𝐼 × Ω, 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)) we 

get 𝑋 ∈ 𝐿2(𝐼 × Ω. 𝐵(𝐼) ⊗ 𝐴; 𝐹(ℝ)). Hence. we can verify  

 𝔼sup
𝑡∈𝐼

[𝑑∞(𝑋
𝑛(𝑡), 𝑋(𝑡)) + 𝑑∞ (𝑋

𝑛(𝑡), 𝑋0 + ∫
𝑡

0
𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ⟨∫

𝑡

0
𝑔(𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)⟩)]

2

 

tends to zero as n goes to infinity. Then  

 𝔼sup
𝑡∈𝐼
𝑑∞
2 [(𝑋(𝑡), 𝑋0 + ∫

𝑡

0
𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ⟨∫

𝑡

0
𝑔(𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)⟩)] = 0. 

Therefore  

 sup
𝑡∈𝐼
𝑑∞ [(𝑋(𝑡), 𝑋0 + ∫

𝑡

0
𝑓(𝑠, 𝑋(𝑠))𝑑𝑠 + ⟨∫

𝑡

0
𝑔(𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)⟩)] = 0,   𝑎. 𝑠., 

which shows the existence of the strong solution. 

Let us now assume that 𝑋, 𝑌: 𝐼 × Ω → 𝐹(ℝ) are strong solutions. Consider  

 𝑗(𝑡) = 𝔼 sup
𝑢∈[0,𝑡]

𝑑∞
2 (𝑋(𝑢), 𝑌(𝑢)), 

then  

 𝑗(𝑡) ≤ (𝑚 + 1)(𝑡 + 4𝑚)𝐿𝔼∫
𝑡

0
𝑑∞
2 (𝑋(𝑠), 𝑌(𝑠))𝑑𝑠 ≤ (𝑚 + 1)(𝑇 + 4𝑚)𝐿 ∫

𝑡

0
𝑗(𝑠)𝑑𝑠. 

Applying the Gronwall inequality yields 𝑗(𝑡) = 0 for 𝑡 ∈ 𝐼. Hence  

 sup
𝑡∈𝐼
𝑑∞(𝑋(𝑡), 𝑌(𝑡)) = 0,    𝑎. 𝑠., 

which completes the proof of strongly uniqueness.    

 

Remark 3.5 Consider the following equation  

 𝑋(𝑡) = 𝔼(𝑋(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑓(𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠.𝑡]𝑐))𝑑𝑠 + ⟨∫

𝑡

0
𝑔(𝑠, 𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐))𝑑𝑊(𝑠)⟩.(14) 

 Following the lines of the proof of Theorem 3.4. we can easily show that (14) admits a unique solution.  

 

Corollary 3.6 Consider the following stochastic fuzzy differential equation  

 𝑋(𝑡) = 𝔼(𝑋(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 +

⟨∫
𝑡

0

𝑏

2
𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠)) |𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩, (15) 

 where 𝑋0 ∈ 𝐿
2(Ω, 𝐴0, 𝑃; 𝐹(ℝ)),  𝑎, 𝑏 ∈ ℝ,  and 𝑋𝐿

1, 𝑋𝑈
1 : ℝ+ × Ω → ℝ  such that [𝑋(𝑡)]1 =

[𝑋𝐿
1(𝑡), 𝑋𝑈

1(𝑡)]. Then, there exists an explicit solution.  

 

 Proof: The equation (15) satisfy assumptions of Theorem 3.4. In order to find a closed explicit form of 

solution to (15), for 𝑎 ≥ 0, we can write the following systems  
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{
𝑋𝐿
1(𝑡) = 𝔼(𝑋𝐿

1(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝐿

1(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ∫
𝑡

0

𝑏

2
𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠))|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)

𝑋𝑈
1(𝑡) = 𝔼(𝑋𝑈

1(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝑈

1(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ∫
𝑡

0

𝑏

2
𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠))|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)

, 

 then  

 𝑋𝐿
1(𝑡) + 𝑋𝑈

1(𝑡) = 𝔼(𝑋𝐿
1(0) + 𝑋𝑈

1(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑡)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 

 +∫
𝑡

0
𝑏𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠)) |𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠), 

 Hence, it has a unique solution  

 𝑋𝐿
1(𝑡) + 𝑋𝑈

1(𝑡) = 𝔼(𝑋𝐿
1(0) + 𝑋𝑈

1(0)|𝐴𝑡𝑐)𝑒𝑥𝑝 {𝑏𝑊(𝑡) + (𝑎 −
𝑏2

2
)𝑡}. (16) 

 Now for every 𝛼 ∈ [0,1], we apply similar procedure to obtain the following systems  

 

{
𝑋𝐿
𝛼(𝑡) = 𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝐿

𝛼(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ∫
𝑡

0

𝑏

2
𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠))|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)

𝑋𝑈
𝛼(𝑡) = 𝔼(𝑋𝑈

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝑈

𝛼(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ∫
𝑡

0

𝑏

2
𝔼((𝑋𝐿

1(𝑠) + 𝑋𝑈
1(𝑠))|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)

. 

 We apply the solution (16) to get the following system  

 𝑋𝐿
𝛼(𝑡) = 𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝐿

𝛼(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 

 +∫
𝑡

0

𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒𝑥𝑝 {𝑏𝑊(𝑠) + (𝑎 −

𝑏2

2
)𝑠} 𝑑𝑊(𝑠) 

 𝑋𝑈
𝛼(𝑡) = 𝔼(𝑋𝑈

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝑈

𝛼(𝑠)|𝐴[𝑠.𝑡]𝑐)𝑑𝑠 

 +∫
𝑡

0

𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒𝑥𝑝 {𝑏𝑊(𝑠) + (𝑎 −

𝑏2

2
)𝑠} 𝑑𝑊(𝑠) (17) 

 Hence. we obtain the unique solution as follows  

 

{
 

 𝑋𝐿
𝛼(𝑡) = 𝑒𝑎𝑡 [𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) +
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)]

𝑋𝑈
𝛼(𝑡) = 𝑒𝑎𝑡 [𝔼(𝑋𝑈

𝛼(0)|𝐴𝑡𝑐) +
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)]

. (18) 

 Then the fuzzy solution X for 𝑎 ≥ 0 is  

 𝑋(𝑡) = 𝑒𝑎𝑡𝔼(𝑋(0)|𝐴𝑡𝑐) + ⟨
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒

𝑎𝑡 ∫
𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)⟩.                                                                        (19) 

 For 𝑎 < 0, we can show that  

 𝑋𝐿
𝛼(𝑡) = 𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝑈

𝛼(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 

 +∫
𝑡

0

𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒𝑥𝑝 {𝑏𝑊(𝑠) + (𝑎 −

𝑏2

2
)𝑠} 𝑑𝑊(𝑠) 

 𝑋𝑈
𝛼(𝑡) = 𝔼(𝑋𝑈

𝛼(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑋𝐿

𝛼(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 

 +∫
𝑡

0

𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒𝑥𝑝 {𝑏𝑊(𝑠) + (𝑎 −

𝑏2

2
)𝑠} 𝑑𝑊(𝑠). (20) 

 then  

 𝑋𝐿
𝛼(𝑡) = 𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) ⋅ 𝑐𝑜𝑠ℎ(𝑎𝑡) + 𝔼(𝑋𝑈
𝛼(0)|𝐴𝑡𝑐) ⋅ 𝑠𝑖𝑛ℎ(𝑎𝑡) 

 +
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠) 

 𝑋𝑈
𝛼(𝑡) = 𝔼(𝑋𝐿

𝛼(0)|𝐴𝑡𝑐) ⋅ 𝑠𝑖𝑛ℎ(𝑎𝑡) + 𝔼(𝑋𝑈
𝛼(0)|𝐴𝑡𝑐) ⋅ 𝑐𝑜𝑠ℎ(𝑎𝑡) 
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 +
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠). (21) 

 Therefore, in the case of 𝑎 < 0 we obtain  

 𝑋(𝑡) = 𝑐𝑜𝑠ℎ(𝑎𝑡)𝔼(𝑋(0)|𝐴𝑡𝑐) + 𝑠𝑖𝑛ℎ(𝑎𝑡)𝔼(𝑋(0)|𝐴𝑡𝑐) 

 +⟨
𝑏

2
𝔼(𝑋𝐿

1(0) + 𝑋𝑈
1(0)|𝐴𝑡𝑐)𝑒

𝑎𝑡 ∫
𝑡

0
𝑒𝑏𝑊(𝑠)−

𝑏2

2
𝑠𝑑𝑊(𝑠)⟩. (22) 

    

3.3  Application in Finance 

In this section , we give an example in a market model with price dynamic with Itô-Skorohod SDE stated 

in previous section. On the probability space (Ω, 𝐴, 𝑃), we suppose two assets: the safe investment 𝐵 =

(𝐵𝑡)𝑡∈[0,𝑇] that 𝐵𝑡 = 1 + 𝑟 ∫
𝑡

0
𝐵𝑠𝑑𝑠, and the risky asset 𝑆 = (𝑆𝑡)𝑡∈[0,𝑇] with the following price dynamic 

 𝑆(𝑡) = 𝔼(𝑆(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑆(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ∫

𝑡

0
𝑏𝔼(𝑆(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠). (23) 

 The stochastic integral is Skorohod integral since the integrand is not adapted the filtration generated by 

a Wiener process or the initial condition is anticipating. Using the correspondence between the Skorohod 

integral and Ito-Skorohod integral, the equations can be solved by using standard iterative techniques. 

In the real market, the data may not be precise. In a linguistic expression, around a value, leads to consider 

the fuzzy theory in our financial model. Hence, we can write  

 𝑆(𝑡) = 𝔼(𝑆(0)|𝐴𝑡𝑐) + ∫
𝑡

0
𝑎𝔼(𝑆(𝑠)|𝐴[𝑠,𝑡]𝑐)𝑑𝑠 + ⟨∫

𝑡

0

𝑏

2
𝔼((𝑆𝐿

1(𝑠) +

𝑆𝑈
1(𝑠))|𝐴[𝑠,𝑡]𝑐)𝑑𝑊(𝑠)⟩. (24) 

 From (18) we have  

 

{
 

 𝑆𝐿
𝛼(𝑡) = 𝑒𝑎𝑡 [𝔼(𝑆𝐿

𝛼(0)|𝐴𝑡𝑐) +
𝑏

2
𝔼(𝑆𝐿

1(0) + 𝑆𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)]

𝑆𝑈
𝛼(𝑡) = 𝑒𝑎𝑡 [𝔼(𝑆𝑈

𝛼(0)|𝐴𝑡𝑐) +
𝑏

2
𝔼(𝑆𝐿

1(0) + 𝑆𝑈
1(0)|𝐴𝑡𝑐) ∫

𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)]

. (25) 

 Then, from (19), for 𝑎 ≥ 0 the closed form solution of the equation (23) is  

 𝑆(𝑡) = 𝑒𝑎𝑡𝔼(𝑆(0)|𝐴𝑡𝑐) + ⟨
𝑏

2
𝔼(𝑆𝐿

1(0) + 𝑆𝑈
1(0)|𝐴𝑡𝑐)𝑒

𝑎𝑡 ∫
𝑡

0
𝑒𝑥𝑝 {𝑏𝑊(𝑠) −

𝑏2

2
𝑠} 𝑑𝑊(𝑠)⟩.                                                                       (26) 

 In the case of 𝑎 < 0, from (22) we obtain  

 𝑆(𝑡) = 𝑐𝑜𝑠ℎ(𝑎𝑡)𝔼(𝑆(0)|𝐴𝑡𝑐) + 𝑠𝑖𝑛ℎ(𝑎𝑡)𝔼(𝑆(0)|𝐴𝑡𝑐) 

 +⟨
𝑏

2
𝔼(𝑆𝐿

1(0) + 𝑆𝑈
1(0)|𝐴𝑡𝑐)𝑒

𝑎𝑡 ∫
𝑡

0
𝑒𝑏𝑊(𝑠)−

𝑏2

2
𝑠𝑑𝑊(𝑠)⟩. 

 

4  Conclusion 

In this paper, we presented an Itô-Skorohod FSDE with anticipating integrands. The Skorohod integral, 

which is the Itô integral expansion to non-adapted integrands are applied in financial models and option 

pricing. We used the Gaussian Malliavin calculus operators to introduce the fuzzy anticipating integrals. 

We applied the Picard’s iteration procedure to show the existence and uniqueness of the solution for this 

class of anticipating SDEs. As an example, in financial models, we obtained the solution for an equation 

with linear coefficients. 
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